Skip to content

Conversation

@clementval
Copy link
Contributor

Compute the dynamic size of variables to set the offsets correctly for multiple variables pointing to the dynamic shared memory. The first variables gets offset 0.

@clementval clementval requested a review from wangzpgi March 17, 2025 21:30
@llvmbot llvmbot added flang Flang issues not falling into any other category flang:fir-hlfir labels Mar 17, 2025
@llvmbot
Copy link
Member

llvmbot commented Mar 17, 2025

@llvm/pr-subscribers-flang-fir-hlfir

Author: Valentin Clement (バレンタイン クレメン) (clementval)

Changes

Compute the dynamic size of variables to set the offsets correctly for multiple variables pointing to the dynamic shared memory. The first variables gets offset 0.


Full diff: https://github.com/llvm/llvm-project/pull/131674.diff

2 Files Affected:

  • (modified) flang/lib/Optimizer/Transforms/CUFComputeSharedMemoryOffsetsAndSize.cpp (+22-6)
  • (modified) flang/test/Fir/CUDA/cuda-shared-offset.mlir (+53)
diff --git a/flang/lib/Optimizer/Transforms/CUFComputeSharedMemoryOffsetsAndSize.cpp b/flang/lib/Optimizer/Transforms/CUFComputeSharedMemoryOffsetsAndSize.cpp
index aec3ea294ac6c..dcb5f42902ee6 100644
--- a/flang/lib/Optimizer/Transforms/CUFComputeSharedMemoryOffsetsAndSize.cpp
+++ b/flang/lib/Optimizer/Transforms/CUFComputeSharedMemoryOffsetsAndSize.cpp
@@ -58,11 +58,13 @@ struct CUFComputeSharedMemoryOffsetsAndSize
     auto gpuMod = cuf::getOrCreateGPUModule(mod, symTab);
     mlir::Type i8Ty = builder.getI8Type();
     mlir::Type i32Ty = builder.getI32Type();
+    mlir::Type idxTy = builder.getIndexType();
     for (auto funcOp : gpuMod.getOps<mlir::gpu::GPUFuncOp>()) {
       unsigned nbDynamicSharedVariables = 0;
       unsigned nbStaticSharedVariables = 0;
       uint64_t sharedMemSize = 0;
       unsigned short alignment = 0;
+      mlir::Value crtDynOffset;
 
       // Go over each shared memory operation and compute their start offset and
       // the size and alignment of the global to be generated if all variables
@@ -73,16 +75,30 @@ struct CUFComputeSharedMemoryOffsetsAndSize
         builder.setInsertionPoint(sharedOp);
         if (fir::hasDynamicSize(sharedOp.getInType())) {
           mlir::Type ty = sharedOp.getInType();
-          // getTypeSizeAndAlignmentOrCrash will crash trying to compute the
-          // size of an array with dynamic size. Just get the alignment to
-          // create the global.
           if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
             ty = seqTy.getEleTy();
           unsigned short align = dl->getTypeABIAlignment(ty);
-          ++nbDynamicSharedVariables;
-          mlir::Value zero = builder.createIntegerConstant(loc, i32Ty, 0);
-          sharedOp.getOffsetMutable().assign(zero);
           alignment = std::max(alignment, align);
+          uint64_t tySize = dl->getTypeSize(ty);
+          ++nbDynamicSharedVariables;
+          if (crtDynOffset) {
+            sharedOp.getOffsetMutable().assign(
+                builder.createConvert(loc, i32Ty, crtDynOffset));
+          } else {
+            mlir::Value zero = builder.createIntegerConstant(loc, i32Ty, 0);
+            sharedOp.getOffsetMutable().assign(zero);
+          }
+
+          mlir::Value dynSize =
+              builder.createIntegerConstant(loc, idxTy, tySize);
+          for (auto extent : sharedOp.getShape())
+            dynSize = builder.create<mlir::arith::MulIOp>(loc, dynSize, extent);
+          if (crtDynOffset)
+            crtDynOffset =
+                builder.create<mlir::arith::AddIOp>(loc, crtDynOffset, dynSize);
+          else
+            crtDynOffset = dynSize;
+
           continue;
         }
         auto [size, align] = fir::getTypeSizeAndAlignmentOrCrash(
diff --git a/flang/test/Fir/CUDA/cuda-shared-offset.mlir b/flang/test/Fir/CUDA/cuda-shared-offset.mlir
index 1eea75c802204..5e9aac4e71438 100644
--- a/flang/test/Fir/CUDA/cuda-shared-offset.mlir
+++ b/flang/test/Fir/CUDA/cuda-shared-offset.mlir
@@ -54,3 +54,56 @@ module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr, dense<
 // CHECK: fir.global internal @_QPshared_static__shared_mem(dense<0> : vector<28xi8>) {alignment = 8 : i64, data_attr = #cuf.cuda<shared>} : !fir.array<28xi8>
 // CHECK: }
 // CHECK: }
+
+// -----
+
+module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 (https://github.com/llvm/llvm-project.git cae351f3453a0a26ec8eb2ddaf773c24a29d929e)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
+  gpu.module @cuda_device_mod {
+    gpu.func @_QMmPshareddyn(%arg0: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "a"}, %arg1: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "b"}, %arg2: i32 {fir.bindc_name = "k"}) attributes {cuf.proc_attr = #cuf.cuda_proc<global>} {
+      %c1_i32 = arith.constant 1 : i32
+      %c2_i32 = arith.constant 2 : i32
+      %c0 = arith.constant 0 : index
+      %5 = fir.address_of(@_QM__fortran_builtinsE__builtin_blockdim) : !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>
+      %6 = fir.declare %5 {uniq_name = "_QM__fortran_builtinsE__builtin_blockdim"} : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>
+      %15 = fir.alloca i32
+      %16 = fir.declare %15 {fortran_attrs = #fir.var_attrs<value>, uniq_name = "_QMmFss1Ek"} : (!fir.ref<i32>) -> !fir.ref<i32>
+      %27 = fir.coordinate_of %6, x : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>) -> !fir.ref<i32>
+      %28 = fir.load %27 : !fir.ref<i32>
+      %29 = fir.convert %28 : (i32) -> i64
+      %30 = fir.convert %29 : (i64) -> index
+      %31 = arith.cmpi sgt, %30, %c0 : index
+      %32 = arith.select %31, %30, %c0 : index
+      %33 = fir.coordinate_of %6, y : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>) -> !fir.ref<i32>
+      %34 = fir.load %33 : !fir.ref<i32>
+      %35 = fir.convert %34 : (i32) -> i64
+      %36 = fir.convert %35 : (i64) -> index
+      %37 = arith.cmpi sgt, %36, %c0 : index
+      %38 = arith.select %37, %36, %c0 : index
+      %39 = cuf.shared_memory !fir.array<?x?xi32>, %32, %38 : index, index {bindc_name = "s1", uniq_name = "_QMmFss1Es1"} -> !fir.ref<!fir.array<?x?xi32>>
+      %40 = fir.shape %32, %38 : (index, index) -> !fir.shape<2>
+      %41 = fir.declare %39(%40) {data_attr = #cuf.cuda<shared>, uniq_name = "_QMmFss1Es1"} : (!fir.ref<!fir.array<?x?xi32>>, !fir.shape<2>) -> !fir.ref<!fir.array<?x?xi32>>
+      %42 = fir.load %16 : !fir.ref<i32>
+      %43 = arith.muli %42, %c2_i32 : i32
+      %44 = fir.convert %43 : (i32) -> i64
+      %45 = fir.convert %44 : (i64) -> index
+      %46 = arith.cmpi sgt, %45, %c0 : index
+      %47 = arith.select %46, %45, %c0 : index
+      %48 = fir.load %16 : !fir.ref<i32>
+      %49 = fir.convert %48 : (i32) -> i64
+      %50 = fir.convert %49 : (i64) -> index
+      %51 = arith.cmpi sgt, %50, %c0 : index
+      %52 = arith.select %51, %50, %c0 : index
+      %53 = cuf.shared_memory !fir.array<?x?xi32>, %47, %52 : index, index {bindc_name = "s2", uniq_name = "_QMmFss1Es2"} -> !fir.ref<!fir.array<?x?xi32>>
+      gpu.return
+    }
+  }
+}
+
+// CHECK: gpu.func @_QMmPshareddyn(%arg0: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "a"}, %arg1: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "b"}, %arg2: i32 {fir.bindc_name = "k"}) attributes {cuf.proc_attr = #cuf.cuda_proc<global>} {
+// CHECK: %[[EXTENT0:.*]] = arith.select 
+// CHECK: %[[EXTENT1:.*]] = arith.select 
+// CHECK: %[[SIZE_EXTENT:.*]] = arith.muli %c4{{.*}}, %[[EXTENT0]] : index
+// CHECK: %[[DYNSIZE:.*]] = arith.muli %[[SIZE_EXTENT]], %[[EXTENT1]] : index
+// CHECK: cuf.shared_memory[%c0{{.*}} : i32] !fir.array<?x?xi32>, %9, %15 : index, index {bindc_name = "s1", uniq_name = "_QMmFss1Es1"} -> !fir.ref<!fir.array<?x?xi32>>
+// CHECK: %[[CONV_DYNSIZE:.*]] = fir.convert %[[DYNSIZE]] : (index) -> i32
+// CHECK: cuf.shared_memory[%[[CONV_DYNSIZE]] : i32] !fir.array<?x?xi32>, %26, %31 : index, index {bindc_name = "s2", uniq_name = "_QMmFss1Es2"} -> !fir.ref<!fir.array<?x?xi32>>

@clementval clementval merged commit e5ec7bb into llvm:main Mar 18, 2025
14 checks passed
@clementval clementval deleted the cuf_shared_dynamic_offset branch March 18, 2025 00:13
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

flang:fir-hlfir flang Flang issues not falling into any other category

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants